A Mycobacterium marinum mel2 mutant is defective for growth in macrophages that produce reactive oxygen and reactive nitrogen species.

نویسندگان

  • Selvakumar Subbian
  • Parmod K Mehta
  • Suat L G Cirillo
  • Luiz E Bermudez
  • Jeffrey D Cirillo
چکیده

Macrophages produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) in response to bacterial infections. Mycobacteria are relatively resistant to ROS, but RNS inhibit growth of, and possibly even kill, mycobacteria in activated macrophages. We recently constructed a Mycobacterium marinum mel2 locus mutant, which is known to affect macrophage infection. We found previously that the mel2 locus confers resistance to ROS and RNS in laboratory medium, suggesting that this locus might play a similar role during growth in macrophages. Since J774A.1 murine macrophages produce high levels of ROS and RNS upon activation with gamma interferon (IFN-gamma), we examined the effects of IFN-gamma on ROS and RNS production by these cells as well as the effects on growth of M. marinum in these cells. We found that an M. marinum mutant with mutation of the first gene in the mel2 locus, melF, is defective for growth in IFN-gamma-plus-lipopolysaccharide-treated J774A.1 cells and that this defect is abrogated by the presence of either inhibitors of nitric oxide synthase or ROS scavengers. Furthermore, the M. marinum melF mutant displays a defect at late stages in the mouse footpad model of infection. These phenotypic characteristics could be complemented fully by the entire mel2 locus but only partially by the presence of melF alone, supporting data suggesting that this insertion mutation has polar effects on downstream genes in the mel2 locus. These observations demonstrate that the M. marinum mel2 locus plays a role in resistance to ROS and RNS produced by activated macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward a new understanding of aging.

Background: Mycobacteria have developed a number of pathways that provide partial protection against both reactive oxygen species (ROS) and reactive nitrogen species (RNS). We recently identified a locus in Mycobacterium marinum, mel2, that plays a role during infection of macrophages. The molecular mechanism of mel2 action is not well understood. Results: To better understand the role of the M...

متن کامل

Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination.

Persistence of Mycobacterium tuberculosis in humans represents a major roadblock to elimination of tuberculosis. We describe identification of a locus in M. tuberculosis, mel2, that displays similarity to bacterial bioluminescent loci and plays an important role during persistence in mice. We constructed a deletion of the mel2 locus and found that the mutant displays increased susceptibility to...

متن کامل

Rational design of drug-like compounds targeting Mycobacterium marinum MelF protein

The mycobacterial mel2 locus (mycobacterial enhanced infection locus, Rv1936-1941) is Mycobacterium marinum and M. tuberculosis specific, which can withstand reactive oxygen species (ROS) and reactive nitrogen species (RNS) induced stress. A library of over a million compounds was screened using in silico virtual ligand screening (VLS) to identify inhibitors against the modeled structure of Mel...

متن کامل

The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response.

The SecA protein is present in all bacteria, and it is a central component of the general Sec-dependent protein export pathway. An unusual property of Mycobacterium tuberculosis is the presence of two SecA proteins: SecA1, the essential "housekeeping" SecA, and SecA2, the accessory secretion factor. Here, we report that a DeltasecA2 mutant of M. tuberculosis was defective for growth in the earl...

متن کامل

Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst.

Macrophages produce reactive oxygen species and reactive nitrogen species that have potent antimicrobial activity. Resistance to killing by macrophages is critical to the virulence of Mycobacterium tuberculosis. M. tuberculosis has two genes encoding superoxide dismutase proteins, sodA and sodC. SodC is a Cu,Zn superoxide dismutase responsible for only a minor portion of the superoxide dismutas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 75 1  شماره 

صفحات  -

تاریخ انتشار 2007